o
    ŀgJ-                     @  sD  d Z ddlmZ ddlmZmZmZ ddlZddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZmZmZ ddlmZmZmZmZ ddlm Z  ddl!m"  m#Z$ ddl%m&Z& er}ddl'm(Z(m)Z) ddlm*Z* ddl+m,Z, dZ-d/ddZ.dd Z/d0ddZ0d1dd Z1	!		!d2d3d)d*Z2d4d-d.Z3dS )5zH
Table Schema builders

https://specs.frictionlessdata.io/table-schema/
    )annotations)TYPE_CHECKINGAnycastN)lib)ujson_loads)	timezones)freq_to_period_freqstr)find_stack_level)	_registry)is_bool_dtypeis_integer_dtypeis_numeric_dtypeis_string_dtype)CategoricalDtypeDatetimeTZDtypeExtensionDtypePeriodDtype)	DataFrame)	to_offset)DtypeObjJSONSerializable)Series)
MultiIndexz1.4.0xr   returnstrc                 C  sp   t | rdS t| rdS t| rdS t| dst| ttfr!dS t| dr)dS t| tr0dS t	| r6d	S dS )
a  
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    integerbooleannumberMdatetimemdurationanystring)
r   r   r   r   is_np_dtype
isinstancer   r   r   r   )r    r(   P/var/www/html/myenv/lib/python3.10/site-packages/pandas/io/json/_table_schema.pyas_json_table_type5   s   
r*   c                 C  s   t j| jj r:| jj}t|dkr!| jjdkr!tjdt d | S t|dkr8t	dd |D r8tjdt d | S | 
 } | jjdkrOt | jj| j_| S | jjpTd| j_| S )z?Sets index names to 'index' for regular, or 'level_x' for Multi   indexz-Index name of 'index' is not round-trippable.)
stacklevelc                 s  s    | ]}| d V  qdS level_N
startswith.0r   r(   r(   r)   	<genexpr>n   s    z$set_default_names.<locals>.<genexpr>z<Index names beginning with 'level_' are not round-trippable.)comall_not_noner,   nameslennamewarningswarnr
   r$   copynlevelsfill_missing_names)datanmsr(   r(   r)   set_default_namese   s(   	rA   dict[str, JSONSerializable]c                 C  s   | j }| jd u rd}n| j}|t|d}t|tr.|j}|j}dt|i|d< ||d< |S t|tr;|j	j
|d< |S t|trTt|jrLd|d< |S |jj|d< |S t|tr^|j|d	< |S )
Nvalues)r9   typeenumconstraintsorderedfreqUTCtzextDtype)dtyper9   r*   r'   r   
categoriesrG   listr   rH   freqstrr   r   is_utcrJ   zoner   )arrrL   r9   fieldcatsrG   r(   r(   r)   !convert_pandas_type_to_json_field}   s2   






rU   str | CategoricalDtypec                 C  s  | d }|dkr
dS |dkr|  ddS |dkr|  ddS |d	kr(|  dd
S |dkr.dS |dkr^|  dr?d| d  dS |  dr\t| d }|j|j}}t||}d| dS dS |dkrd| v rvd| v rvt| d d | d dS d| v rt| d S dS td| )a  
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'

    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True, categories_dtype=object)

    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'

    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    rD   r%   objectr   rK   int64r   float64r   boolr#   timedelta64r!   rJ   zdatetime64[ns, ]rH   zperiod[zdatetime64[ns]r$   rF   rG   rE   )rM   rG   z#Unsupported or invalid field type: )	getr   nr9   r	   r   registryfind
ValueError)rS   typoffsetfreq_n	freq_namerH   r(   r(   r)   !convert_json_field_to_pandas_type   s:   )


rf   Tr?   DataFrame | Seriesr,   rZ   primary_keybool | Noneversionc                 C  s  |du rt | } i }g }|r?| jjdkr7td| j| _t| jj| jjD ]\}}t|}||d< || q$n|t| j | j	dkrU| 
 D ]\}	}
|t|
 qHn|t|  ||d< |r| jjr|du r| jjdkrx| jjg|d< n| jj|d< n|dur||d< |rt|d< |S )	a  
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that last revised the table schema. This version
        can be different from the installed pandas version.

    Returns
    -------
    dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> from pandas.io.json._table_schema import build_table_schema
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}
    Tr+   r   r9   fieldsN
primaryKeypandas_version)rA   r,   r=   r   ziplevelsr7   rU   appendndimitems	is_uniquer9   TABLE_SCHEMA_VERSION)r?   r,   rh   rj   schemark   levelr9   	new_fieldcolumnsr(   r(   r)   build_table_schema   s8   8
rz   precise_floatr   c                 C  s   t | |d}dd |d d D }t|d |d| }dd	 |d d D }d
| v r0td||}d|d v rc||d d }t|jjdkrX|jj	dkrVd|j_	|S dd |jjD |j_|S )a  
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    )r{   c                 S  s   g | ]}|d  qS r9   r(   r3   rS   r(   r(   r)   
<listcomp>k  s    z&parse_table_schema.<locals>.<listcomp>ru   rk   r?   )columnsc                 S  s   i | ]	}|d  t |qS r|   )rf   r}   r(   r(   r)   
<dictcomp>n  s    z&parse_table_schema.<locals>.<dictcomp>r[   z<table="orient" can not yet read ISO-formatted Timedelta datarl   r+   r,   Nc                 S  s   g | ]}| d rdn|qS r.   r0   r2   r(   r(   r)   r~     s    )
r   r   rC   NotImplementedErrorastype	set_indexr8   r,   r7   r9   )jsonr{   table	col_orderdfdtypesr(   r(   r)   parse_table_schemaF  s*   $


r   )r   r   r   r   )r   rB   )r   rV   )TNT)
r?   rg   r,   rZ   rh   ri   rj   rZ   r   rB   )r{   rZ   r   r   )4__doc__
__future__r   typingr   r   r   r:   pandas._libsr   pandas._libs.jsonr   pandas._libs.tslibsr   pandas._libs.tslibs.dtypesr	   pandas.util._exceptionsr
   pandas.core.dtypes.baser   r_   pandas.core.dtypes.commonr   r   r   r   pandas.core.dtypes.dtypesr   r   r   r   pandasr   pandas.core.commoncorecommonr5   pandas.tseries.frequenciesr   pandas._typingr   r   r   pandas.core.indexes.multir   rt   r*   rA   rU   rf   rz   r   r(   r(   r(   r)   <module>   s:    
0

 O\