o
    ŀgC                     @  s$  d dl mZ d dlZd dlmZ d dlZd dlmZ d dl	m
Z
 d dlmZ d dlmZ d dlm  mZ d dlmZ d d	lmZ d d
lmZ d dlmZ d dlmZ ergd dlmZ d dlm Z  d dl!m"Z" d0ddZ#eed ddd 						d1d2d"dZ$d3d4d'd(Z%	*d5d6d.d/Z&dS )7    )annotationsN)TYPE_CHECKING)Appender)is_list_like)concat_compat)notna)
MultiIndex)concat)tile_compat)_shared_docs)
to_numeric)Hashable)AnyArrayLike)	DataFramevariablestrreturnlistc                 C  sD   | d ur t | s| gS t|trt| tst| dt| S g S )Nz7 must be a list of tuples when columns are a MultiIndex)r   
isinstancer   r   
ValueError)arg_varsr   columns r   L/var/www/html/myenv/lib/python3.10/site-packages/pandas/core/reshape/melt.pyensure_list_vars   s   r   meltzpd.melt(df, zDataFrame.melt)callerothervalueTframer   
value_namer   ignore_indexboolc                   s  | j v rtd| dt|d j }|d u}t|d j }|s#|rg|d ur. j |}n j }|| }	||	}
|
dk}| rSdd t|	|D }td| |rb jd d t	
|
f  n	   n   |d urv j | _ |d u rt j trt j jtt j jkr j j}n+d	d tt j jD }n j jd ur j jnd
g}nt|rtd|d|g} j\}}|t| }i }|D ]5} |}t|jtjs|dkrt|g| dd||< qt|g |j|jd||< qt|j|||< q|| |g } jd dkr1tdd  jD s1t fddt jd D j||< n jd||< t|D ]\}} j  |!|||< q= j"||d}|s_t# j$||_$|S )Nzvalue_name (z3) cannot match an element in the DataFrame columns.id_vars
value_varsc                 S  s   g | ]\}}|r|qS r   r   ).0lab	not_foundr   r   r   
<listcomp>G   s
    zmelt.<locals>.<listcomp>zFThe following id_vars or value_vars are not present in the DataFrame: c                 S  s   g | ]}d | qS )	variable_r   r&   ir   r   r   r)   ^       r   z	var_name=z must be a scalar.r   T)r!   )namedtype   c                 s  s$    | ]}t |tj o|jV  qd S N)r   npr/   _supports_2d)r&   dtr   r   r   	<genexpr>z   s    
zmelt.<locals>.<genexpr>c                   s   g | ]} j d d |f qS r1   )ilocr+   r   r   r   r)   ~   s    Fr   )%r   r   r   get_level_valuesget_indexer_foranyzipKeyErrorr6   algosuniquecopyr   r   lennamessetranger.   r   shapepopr/   r2   r	   typetile_valuesdtypesvaluesravel	enumerate_get_level_valuesrepeat_constructorr
   index)r   r#   r$   var_namer    	col_levelr!   value_vars_was_not_nonelevellabelsidxmissingmissing_labelsnum_rowsKnum_cols_adjustedmdatacolid_datamcolumnsr,   resultr   r7   r   r   +   s   








datagroupsdictdropnac                   s  i }g }t  }ttt| }| D ]'\}}t||kr#td fdd|D }	t|	||< || |	|}qt
 j|}
|
D ]}t | j|||< qG|rtjt||d  td|D ]
}t|| M qf sfdd| D } j||
| dS )	a  
    Reshape wide-format data to long. Generalized inverse of DataFrame.pivot.

    Accepts a dictionary, ``groups``, in which each key is a new column name
    and each value is a list of old column names that will be "melted" under
    the new column name as part of the reshape.

    Parameters
    ----------
    data : DataFrame
        The wide-format DataFrame.
    groups : dict
        {new_name : list_of_columns}.
    dropna : bool, default True
        Do not include columns whose entries are all NaN.

    Returns
    -------
    DataFrame
        Reshaped DataFrame.

    See Also
    --------
    melt : Unpivot a DataFrame from wide to long format, optionally leaving
        identifiers set.
    pivot : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.
    wide_to_long : Wide panel to long format. Less flexible but more
        user-friendly than melt.

    Examples
    --------
    >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
    ...                      'team': ['Red Sox', 'Yankees'],
    ...                      'year1': [2007, 2007], 'year2': [2008, 2008]})
    >>> data
       hr1  hr2     team  year1  year2
    0  514  545  Red Sox   2007   2008
    1  573  526  Yankees   2007   2008

    >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
          team  year   hr
    0  Red Sox  2007  514
    1  Yankees  2007  573
    2  Red Sox  2008  545
    3  Yankees  2008  526
    z$All column lists must be same lengthc                   s   g | ]} | j qS r   )rJ   )r&   r_   )rc   r   r   r)      r-   zlreshape.<locals>.<listcomp>r   )r/   c                   s   i | ]	\}}||  qS r   r   )r&   kv)maskr   r   
<dictcomp>   s    zlreshape.<locals>.<dictcomp>r9   )rD   rB   nextiterrL   itemsr   r   appendunionr   r   
differencer2   rI   rJ   onesr"   r   allrQ   )rc   rd   rf   r^   
pivot_colsall_colsr\   targetrC   	to_concatid_colsr_   cr   )rc   ri   r   lreshape   s*   5
ry    \d+dfsepsuffixc              
   C  s  ddd}ddd}t |s|g}nt|}| j| r"td	t |s*|g}nt|}| |   r:td
g }g }	|D ]}
|| |
||}|	| ||| |
|||| q@t	|dd}| j
|	}| | }t|dkry|||S |j| |d||g S )ax   
    Unpivot a DataFrame from wide to long format.

    Less flexible but more user-friendly than melt.

    With stubnames ['A', 'B'], this function expects to find one or more
    group of columns with format
    A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,...
    You specify what you want to call this suffix in the resulting long format
    with `j` (for example `j='year'`)

    Each row of these wide variables are assumed to be uniquely identified by
    `i` (can be a single column name or a list of column names)

    All remaining variables in the data frame are left intact.

    Parameters
    ----------
    df : DataFrame
        The wide-format DataFrame.
    stubnames : str or list-like
        The stub name(s). The wide format variables are assumed to
        start with the stub names.
    i : str or list-like
        Column(s) to use as id variable(s).
    j : str
        The name of the sub-observation variable. What you wish to name your
        suffix in the long format.
    sep : str, default ""
        A character indicating the separation of the variable names
        in the wide format, to be stripped from the names in the long format.
        For example, if your column names are A-suffix1, A-suffix2, you
        can strip the hyphen by specifying `sep='-'`.
    suffix : str, default '\\d+'
        A regular expression capturing the wanted suffixes. '\\d+' captures
        numeric suffixes. Suffixes with no numbers could be specified with the
        negated character class '\\D+'. You can also further disambiguate
        suffixes, for example, if your wide variables are of the form A-one,
        B-two,.., and you have an unrelated column A-rating, you can ignore the
        last one by specifying `suffix='(!?one|two)'`. When all suffixes are
        numeric, they are cast to int64/float64.

    Returns
    -------
    DataFrame
        A DataFrame that contains each stub name as a variable, with new index
        (i, j).

    See Also
    --------
    melt : Unpivot a DataFrame from wide to long format, optionally leaving
        identifiers set.
    pivot : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.

    Notes
    -----
    All extra variables are left untouched. This simply uses
    `pandas.melt` under the hood, but is hard-coded to "do the right thing"
    in a typical case.

    Examples
    --------
    >>> np.random.seed(123)
    >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
    ...                    "A1980" : {0 : "d", 1 : "e", 2 : "f"},
    ...                    "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
    ...                    "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
    ...                    "X"     : dict(zip(range(3), np.random.randn(3)))
    ...                   })
    >>> df["id"] = df.index
    >>> df
      A1970 A1980  B1970  B1980         X  id
    0     a     d    2.5    3.2 -1.085631   0
    1     b     e    1.2    1.3  0.997345   1
    2     c     f    0.7    0.1  0.282978   2
    >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
    ... # doctest: +NORMALIZE_WHITESPACE
                    X  A    B
    id year
    0  1970 -1.085631  a  2.5
    1  1970  0.997345  b  1.2
    2  1970  0.282978  c  0.7
    0  1980 -1.085631  d  3.2
    1  1980  0.997345  e  1.3
    2  1980  0.282978  f  0.1

    With multiple id columns

    >>> df = pd.DataFrame({
    ...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
    ...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
    ...     'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
    ...     'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
    ... })
    >>> df
       famid  birth  ht1  ht2
    0      1      1  2.8  3.4
    1      1      2  2.9  3.8
    2      1      3  2.2  2.9
    3      2      1  2.0  3.2
    4      2      2  1.8  2.8
    5      2      3  1.9  2.4
    6      3      1  2.2  3.3
    7      3      2  2.3  3.4
    8      3      3  2.1  2.9
    >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
    >>> l
    ... # doctest: +NORMALIZE_WHITESPACE
                      ht
    famid birth age
    1     1     1    2.8
                2    3.4
          2     1    2.9
                2    3.8
          3     1    2.2
                2    2.9
    2     1     1    2.0
                2    3.2
          2     1    1.8
                2    2.8
          3     1    1.9
                2    2.4
    3     1     1    2.2
                2    3.3
          2     1    2.3
                2    3.4
          3     1    2.1
                2    2.9

    Going from long back to wide just takes some creative use of `unstack`

    >>> w = l.unstack()
    >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format)
    >>> w.reset_index()
       famid  birth  ht1  ht2
    0      1      1  2.8  3.4
    1      1      2  2.9  3.8
    2      1      3  2.2  2.9
    3      2      1  2.0  3.2
    4      2      2  1.8  2.8
    5      2      3  1.9  2.4
    6      3      1  2.2  3.3
    7      3      2  2.3  3.4
    8      3      3  2.1  2.9

    Less wieldy column names are also handled

    >>> np.random.seed(0)
    >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3),
    ...                    'A(weekly)-2011': np.random.rand(3),
    ...                    'B(weekly)-2010': np.random.rand(3),
    ...                    'B(weekly)-2011': np.random.rand(3),
    ...                    'X' : np.random.randint(3, size=3)})
    >>> df['id'] = df.index
    >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS
       A(weekly)-2010  A(weekly)-2011  B(weekly)-2010  B(weekly)-2011  X  id
    0        0.548814        0.544883        0.437587        0.383442  0   0
    1        0.715189        0.423655        0.891773        0.791725  1   1
    2        0.602763        0.645894        0.963663        0.528895  1   2

    >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id',
    ...                 j='year', sep='-')
    ... # doctest: +NORMALIZE_WHITESPACE
             X  A(weekly)  B(weekly)
    id year
    0  2010  0   0.548814   0.437587
    1  2010  1   0.715189   0.891773
    2  2010  1   0.602763   0.963663
    0  2011  0   0.544883   0.383442
    1  2011  1   0.423655   0.791725
    2  2011  1   0.645894   0.528895

    If we have many columns, we could also use a regex to find our
    stubnames and pass that list on to wide_to_long

    >>> stubnames = sorted(
    ...     set([match[0] for match in df.columns.str.findall(
    ...         r'[A-B]\(.*\)').values if match != []])
    ... )
    >>> list(stubnames)
    ['A(weekly)', 'B(weekly)']

    All of the above examples have integers as suffixes. It is possible to
    have non-integers as suffixes.

    >>> df = pd.DataFrame({
    ...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
    ...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
    ...     'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
    ...     'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
    ... })
    >>> df
       famid  birth  ht_one  ht_two
    0      1      1     2.8     3.4
    1      1      2     2.9     3.8
    2      1      3     2.2     2.9
    3      2      1     2.0     3.2
    4      2      2     1.8     2.8
    5      2      3     1.9     2.4
    6      3      1     2.2     3.3
    7      3      2     2.3     3.4
    8      3      3     2.1     2.9

    >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age',
    ...                     sep='_', suffix=r'\w+')
    >>> l
    ... # doctest: +NORMALIZE_WHITESPACE
                      ht
    famid birth age
    1     1     one  2.8
                two  3.4
          2     one  2.9
                two  3.8
          3     one  2.2
                two  2.9
    2     1     one  2.0
                two  3.2
          2     one  1.8
                two  2.8
          3     one  1.9
                two  2.4
    3     1     one  2.2
                two  3.3
          2     one  2.3
                two  3.4
          3     one  2.1
                two  2.9
    stubr   r}   r~   c                 S  s4   dt | t | | d}| j| jj| S )N^$)reescaper   r   match)r|   r   r}   r~   regexr   r   r   get_var_names  s    z#wide_to_long.<locals>.get_var_namesc              
   S  sz   t | |||||d}|| jjt|| ddd||< z
t|| ||< W n ttt	fy4   Y nw |
||g S )N)r#   r$   r    rS   rz   T)r   )r   rstripr   replacer   r   r   	TypeErrorr   OverflowError	set_index)r|   r   r,   jr$   r}   newdfr   r   r   	melt_stub  s   $zwide_to_long.<locals>.melt_stubz,stubname can't be identical to a column namez3the id variables need to uniquely identify each rowr0   )axis)onN)r   r   r}   r   r~   r   )r   r   r}   r   )r   r   r   isinr<   r   
duplicatedextendrn   r	   rp   rB   r   joinmergereset_index)r|   	stubnamesr,   r   r}   r~   r   r   _meltedvalue_vars_flattenedr   	value_varmeltedr#   newr   r   r   wide_to_long   s2    
o

r   )r   r   r   r   )NNNr   NT)r   r   r    r   r!   r"   r   r   )T)rc   r   rd   re   rf   r"   r   r   )rz   r{   )r|   r   r}   r   r~   r   r   r   )'
__future__r   r   typingr   numpyr2   pandas.util._decoratorsr   pandas.core.dtypes.commonr   pandas.core.dtypes.concatr   pandas.core.dtypes.missingr   pandas.core.algorithmscore
algorithmsr?   pandas.core.indexes.apir   pandas.core.reshape.concatr	   pandas.core.reshape.utilr
   pandas.core.shared_docsr   pandas.core.tools.numericr   collections.abcr   pandas._typingr   pandasr   r   r   ry   r   r   r   r   r   <module>   s<    
aQ