o
    ŀg*                     @  s*  d Z ddlmZ ddlmZ ddlZddlmZm	Z	 ddl
mZmZmZ ddlmZ ddlmZ dd	lmZmZ dd
lmZ ddlmZ ddlm  mZ ddlmZmZ ddl m!Z! ddl"m#Z# eriddl$m%Z% e#g dej& edde#g deG dd de!Z'						ddddddZ(dS ) z implement the TimedeltaIndex     )annotations)TYPE_CHECKINGN)indexlib)
Resolution	Timedelta	to_offset)disallow_ambiguous_unit)find_stack_level)	is_scalarpandas_dtype)	ABCSeries)TimedeltaArray)Indexmaybe_extract_name)DatetimeTimedeltaMixin)inherit_names)DtypeObj)__neg____pos____abs__total_secondsroundfloorceilT)wrap)
componentsto_pytimedeltasumstdmedianc                   @  s   e Zd ZU dZdZeZed"ddZde	d< e
jZed#d
dZdejejejdddfd$ddZd%ddZdd Zd&ddZd'ddZed(d d!ZdS ))TimedeltaIndexal  
    Immutable Index of timedelta64 data.

    Represented internally as int64, and scalars returned Timedelta objects.

    Parameters
    ----------
    data : array-like (1-dimensional), optional
        Optional timedelta-like data to construct index with.
    unit : {'D', 'h', 'm', 's', 'ms', 'us', 'ns'}, optional
        The unit of ``data``.

        .. deprecated:: 2.2.0
         Use ``pd.to_timedelta`` instead.

    freq : str or pandas offset object, optional
        One of pandas date offset strings or corresponding objects. The string
        ``'infer'`` can be passed in order to set the frequency of the index as
        the inferred frequency upon creation.
    dtype : numpy.dtype or str, default None
        Valid ``numpy`` dtypes are ``timedelta64[ns]``, ``timedelta64[us]``,
        ``timedelta64[ms]``, and ``timedelta64[s]``.
    copy : bool
        Make a copy of input array.
    name : object
        Name to be stored in the index.

    Attributes
    ----------
    days
    seconds
    microseconds
    nanoseconds
    components
    inferred_freq

    Methods
    -------
    to_pytimedelta
    to_series
    round
    floor
    ceil
    to_frame
    mean

    See Also
    --------
    Index : The base pandas Index type.
    Timedelta : Represents a duration between two dates or times.
    DatetimeIndex : Index of datetime64 data.
    PeriodIndex : Index of Period data.
    timedelta_range : Create a fixed-frequency TimedeltaIndex.

    Notes
    -----
    To learn more about the frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    >>> pd.TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'])
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq=None)

    We can also let pandas infer the frequency when possible.

    >>> pd.TimedeltaIndex(np.arange(5) * 24 * 3600 * 1e9, freq='infer')
    TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')
    timedeltaindexreturntype[libindex.TimedeltaEngine]c                 C  s   t jS N)libindexTimedeltaEngineself r*   R/var/www/html/myenv/lib/python3.10/site-packages/pandas/core/indexes/timedeltas.py_engine_type   s   zTimedeltaIndex._engine_typer   _dataResolution | Nonec                 C  s   | j jS r%   )r-   _resolution_objr(   r*   r*   r+   r/      s   zTimedeltaIndex._resolution_objNFcopyboolc           
      C  sJ  |t jurtjd| j dtt d |t jur'tjd| j dtt d nd }t||| }t|r8| 	| t
| |d urDt|}t|trd|t ju rd|d u sW||jkrd|r]| }| j||dS t|tr|t ju r|d u r|d u s{||jkr|r| S | S tj|||||d}d }	|st|ttfr|j}	| j|||	dS )	NzThe 'closed' keyword in zD construction is deprecated and will be removed in a future version.)
stacklevelzThe 'unit' keyword in za construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.name)frequnitdtyper0   )r4   refs)r   
no_defaultwarningswarn__name__FutureWarningr
   r   r   _raise_scalar_data_errorr	   r   
isinstancer   r7   r0   _simple_newr!   _view_from_sequence_not_strictr   r   _references)
clsdatar6   r5   closedr7   r0   r4   tdarrr8   r*   r*   r+   __new__   sR   






zTimedeltaIndex.__new__r7   r   c                 C  s   t |dS )zF
        Can we compare values of the given dtype to our own?
        m)r   is_np_dtype)r)   r7   r*   r*   r+   _is_comparable_dtype   s   z#TimedeltaIndex._is_comparable_dtypec              
   C  sN   |  | z
| jj|dd}W n ty  } zt||d}~ww t| |S )z
        Get integer location for requested label

        Returns
        -------
        loc : int, slice, or ndarray[int]
        F)unboxN)_check_indexing_errorr-   _validate_scalar	TypeErrorKeyErrorr   get_loc)r)   keyerrr*   r*   r+   rQ      s   

zTimedeltaIndex.get_loclabelstrc                 C  s   t |}|d fS r%   )r   )r)   rT   parsedr*   r*   r+   _parse_with_reso   s   zTimedeltaIndex._parse_with_resorV   r   c                 C  s,   | |j}|t|j tdd }||fS )N   ns)r   resolution_stringr   r   )r)   resorV   lboundrboundr*   r*   r+   _parsed_string_to_bounds   s   z'TimedeltaIndex._parsed_string_to_boundsc                 C  s   dS )Ntimedelta64r*   r(   r*   r*   r+   inferred_type  s   zTimedeltaIndex.inferred_type)r#   r$   )r#   r.   )r0   r1   )r7   r   r#   r1   )rT   rU   )rV   r   )r#   rU   )r<   
__module____qualname____doc___typr   	_data_clspropertyr,   __annotations__r   _get_string_slicer/   r   r9   rH   rK   rQ   rW   r^   r`   r*   r*   r*   r+   r!   &   s0   
 H
I	

r!   )r6   periods
int | Noner6   
str | Noner#   c                C  sF   |du rt || |rd}t|}tj| |||||d}tj||dS )a$  
    Return a fixed frequency TimedeltaIndex with day as the default.

    Parameters
    ----------
    start : str or timedelta-like, default None
        Left bound for generating timedeltas.
    end : str or timedelta-like, default None
        Right bound for generating timedeltas.
    periods : int, default None
        Number of periods to generate.
    freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'D'
        Frequency strings can have multiples, e.g. '5h'.
    name : str, default None
        Name of the resulting TimedeltaIndex.
    closed : str, default None
        Make the interval closed with respect to the given frequency to
        the 'left', 'right', or both sides (None).
    unit : str, default None
        Specify the desired resolution of the result.

        .. versionadded:: 2.0.0

    Returns
    -------
    TimedeltaIndex

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end`` (closed on both sides).

    To learn more about the frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    >>> pd.timedelta_range(start='1 day', periods=4)
    TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')

    The ``closed`` parameter specifies which endpoint is included.  The default
    behavior is to include both endpoints.

    >>> pd.timedelta_range(start='1 day', periods=4, closed='right')
    TimedeltaIndex(['2 days', '3 days', '4 days'],
                   dtype='timedelta64[ns]', freq='D')

    The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
    Only fixed frequencies can be passed, non-fixed frequencies such as
    'M' (month end) will raise.

    >>> pd.timedelta_range(start='1 day', end='2 days', freq='6h')
    TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                    '1 days 18:00:00', '2 days 00:00:00'],
                   dtype='timedelta64[ns]', freq='6h')

    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).

    >>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
    TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
                    '5 days 00:00:00'],
                   dtype='timedelta64[ns]', freq=None)

    **Specify a unit**

    >>> pd.timedelta_range("1 Day", periods=3, freq="100000D", unit="s")
    TimedeltaIndex(['1 days', '100001 days', '200001 days'],
                   dtype='timedelta64[s]', freq='100000D')
    ND)rF   r6   r3   )comany_noner   r   _generate_ranger!   r@   )startendri   r5   r4   rF   r6   rG   r*   r*   r+   timedelta_range
  s   Srr   )NNNNNN)ri   rj   r6   rk   r#   r!   ))rc   
__future__r   typingr   r:   pandas._libsr   r&   r   pandas._libs.tslibsr   r   r   pandas._libs.tslibs.timedeltasr	   pandas.util._exceptionsr
   pandas.core.dtypes.commonr   r   pandas.core.dtypes.genericr   pandas.core.arrays.timedeltasr   pandas.core.commoncorecommonrm   pandas.core.indexes.baser   r    pandas.core.indexes.datetimeliker   pandas.core.indexes.extensionr   pandas._typingr   
_field_opsr!   rr   r*   r*   r*   r+   <module>   sN    
 V