o
    ŀg\                    @  s  d dl mZ d dlmZmZ d dlmZ d dlZd dlmZm	Z	m
Z
mZmZmZmZmZ d dlZd dlZd dlmZmZ d dlmZ d dlmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z) d d	l*m+Z+m,Z, d d
l-m.Z. d dl/m0Z0 d dl1m2Z2 d dl3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZC d dlDmEZF d dlGmHZHmIZImJZJ d dlKmLZLmMZMmNZN d dlOmPZP d dlQmRZR d dlSmTZTmUZUmVZVmWZWmXZXmYZY d dlZm[Z[m\Z\m]Z]m^Z^m_Z_ d dl`maZambZb d dlcmdZdmeZe d dlfmgZgmhZhmiZimjZj d dlkmlZlmmZmmnZn d dlompZp d dlqmrZr d dlsmtZtmuZu d dlvmwZw d dlxmyZy d dlzm{Z{ d dl|m}  m~Z d dlmZmZmZ d d lmZmZ d d!lmZ d d"lmZmZ d d#lmZ erd d$lmZmZ d d%lmZ d d&lmZmZmZ ee6ef ZdSd)d*ZdTd.d/ZG d0d1 d1eretZG d2d3 d3eZd4Zd5Zd6Zd7ZG d8d9 d9eZdUd>d?ZedVdBdCZedWdFdCZdXdIdCZdYdMdNZdZdQdRZdS )[    )annotations)datetime	timedelta)wrapsN)TYPE_CHECKINGAnyCallableLiteralUnioncastfinaloverload)algoslib)NDArrayBacked)
BaseOffsetIncompatibleFrequencyNaTNaTTypePeriod
ResolutionTick	Timedelta	Timestampadd_overflowsafeastype_overflowsafeget_unit_from_dtypeiNaTints_to_pydatetimeints_to_pytimedeltaperiods_per_day	to_offset)RoundToround_nsint64)compare_mismatched_resolutions)get_unit_for_round)integer_op_not_supported)	ArrayLikeAxisIntDatetimeLikeScalarDtypeDtypeObjFInterpolateOptionsNpDtypePositionalIndexer2DPositionalIndexerTupleScalarIndexerSelfSequenceIndexerTimeAmbiguousTimeNonexistentnpt)function)AbstractMethodErrorInvalidComparisonPerformanceWarning)AppenderSubstitutioncache_readonly)find_stack_level)'construct_1d_object_array_from_listlike)is_all_stringsis_integer_dtypeis_list_likeis_object_dtypeis_string_dtypepandas_dtype)
ArrowDtypeCategoricalDtypeDatetimeTZDtypeExtensionDtypePeriodDtype)ABCCategoricalABCMultiIndex)is_valid_na_for_dtypeisna)
algorithmsmissingnanopsops)isin	map_arrayunique1d)datetimelike_accumulations)OpsMixin)NDArrayBackedExtensionArrayravel_compat)ArrowExtensionArray)ExtensionArray)IntegerArray)arrayensure_wrapped_if_datetimelikeextract_array)check_array_indexercheck_setitem_lengths)unpack_zerodim_and_defer)invalid_comparisonmake_invalid_op)frequencies)IteratorSequenceIndex)DatetimeArrayPeriodArrayTimedeltaArrayop_namestrc                 C  s   t | }t| |S N)rd   rb   )rm   op rq   S/var/www/html/myenv/lib/python3.10/site-packages/pandas/core/arrays/datetimelike.py_make_unpacked_invalid_op   s   rs   methr,   returnc                   s   t   fdd}tt|S )z
    For PeriodArray methods, dispatch to DatetimeArray and re-wrap the results
    in PeriodArray.  We cannot use ._ndarray directly for the affected
    methods because the i8 data has different semantics on NaT values.
    c                   sx   t | jts | g|R i |S | d} |g|R i |}|tu r'tS t |tr2| |jS |d}| |S )NM8[ns]i8)	
isinstancedtyperJ   viewr   r   	_box_func_value_from_backing_data)selfargskwargsarrresultres_i8rt   rq   rr   new_meth   s   



z"_period_dispatch.<locals>.new_meth)r   r   r,   )rt   r   rq   r   rr   _period_dispatch   s   
r   c                      s  e Zd ZU dZded< ded< ded< ded	< d
ed< edddZ	ddddZedddZ	dddZ
dd!d"Zdd$d%Zd&d' Zdd(d)Zdd+d,Zedd.d/Zd0dd1d d5d6Zddd8d9Z	ddd<d=Zedd@dAZeddDdAZd fdHdAZddIdJZd	 fdMdNZd
dOdPZdd fdRdSZeddTdUZeddXdUZedd[dUZeddd^dUZdd fd_dUZd`da ZddQdbddedfZdddgdhZdddjdkZdldm Ze ddodpZ!e"ddqdrZ#ddudvZ$ddwdxZ%eddydzZ&edd{d|Z'e(dfdd~dZ)edddZ*edddZ+edddZ,edddZ-edddZ.edddZ/edddZ0dd Z1e2dZ3e2dZ4e2dZ5e2dZ6e2dZ7e2dZ8e2dZ9e2dZ:e2dZ;e2dZ<e2dZ=e2dZ>e dddZ?e dddZ@e dddZAe dddZBe d ddZCe d!ddZDe d"ddZEe d#ddZFdd ZGdd ZHd$ddZIe d%ddZJe dd ZKe dd ZLe d&ddZMe d'ddĄZNdQdŜd(ddɄZOePdʃdd̄ ZQdd΄ ZRePdσddф ZSddӄ ZTdddՄZUdddׄZVeWd) fdd܄ZXeWddQdݜd*ddZYeWddQdݜd*ddZZdQddd+ddZ[eWddQdݜd*ddZ\dd,ddZ]d-ddZ^  Z_S (.  DatetimeLikeArrayMixinz
    Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray

    Assumes that __new__/__init__ defines:
        _ndarray

    and that inheriting subclass implements:
        freq
    ztuple[str, ...]_infer_matcheszCallable[[DtypeObj], bool]_is_recognized_dtypeztuple[type, ...]_recognized_scalars
np.ndarray_ndarrayBaseOffset | Nonefreqru   boolc                 C  s   dS )NTrq   r~   rq   rq   rr   _can_hold_na      z#DatetimeLikeArrayMixin._can_hold_naNFry   Dtype | NonecopyNonec                 C     t | ro   r8   )r~   datary   r   r   rq   rq   rr   __init__   s   zDatetimeLikeArrayMixin.__init__type[DatetimeLikeScalar]c                 C  r   )z
        The scalar associated with this datelike

        * PeriodArray : Period
        * DatetimeArray : Timestamp
        * TimedeltaArray : Timedelta
        r   r   rq   rq   rr   _scalar_type   s   	z#DatetimeLikeArrayMixin._scalar_typevaluern   DTScalarOrNaTc                 C  r   )ay  
        Construct a scalar type from a string.

        Parameters
        ----------
        value : str

        Returns
        -------
        Period, Timestamp, or Timedelta, or NaT
            Whatever the type of ``self._scalar_type`` is.

        Notes
        -----
        This should call ``self._check_compatible_with`` before
        unboxing the result.
        r   r~   r   rq   rq   rr   _scalar_from_string      z*DatetimeLikeArrayMixin._scalar_from_string)np.int64 | np.datetime64 | np.timedelta64c                 C  r   )a  
        Unbox the integer value of a scalar `value`.

        Parameters
        ----------
        value : Period, Timestamp, Timedelta, or NaT
            Depending on subclass.

        Returns
        -------
        int

        Examples
        --------
        >>> arr = pd.array(np.array(['1970-01-01'], 'datetime64[ns]'))
        >>> arr._unbox_scalar(arr[0])
        numpy.datetime64('1970-01-01T00:00:00.000000000')
        r   r   rq   rq   rr   _unbox_scalar   s   z$DatetimeLikeArrayMixin._unbox_scalarotherc                 C  r   )a|  
        Verify that `self` and `other` are compatible.

        * DatetimeArray verifies that the timezones (if any) match
        * PeriodArray verifies that the freq matches
        * Timedelta has no verification

        In each case, NaT is considered compatible.

        Parameters
        ----------
        other

        Raises
        ------
        Exception
        r   r~   r   rq   rq   rr   _check_compatible_with  r   z-DatetimeLikeArrayMixin._check_compatible_withc                 C  r   )zI
        box function to get object from internal representation
        r   )r~   xrq   rq   rr   r{   -     z DatetimeLikeArrayMixin._box_funcc                 C  s   t j|| jddS )z1
        apply box func to passed values
        F)convert)r   	map_inferr{   )r~   valuesrq   rq   rr   _box_values3  s   z"DatetimeLikeArrayMixin._box_valuesrf   c                   s8    j dkr fddtt D S  fdd jD S )N   c                 3  s    | ]} | V  qd S ro   rq   ).0nr   rq   rr   	<genexpr>;  s    z2DatetimeLikeArrayMixin.__iter__.<locals>.<genexpr>c                 3  s    | ]}  |V  qd S ro   )r{   )r   vr   rq   rr   r   =  s    )ndimrangelenasi8r   rq   r   rr   __iter__9  s   
zDatetimeLikeArrayMixin.__iter__npt.NDArray[np.int64]c                 C  s   | j dS )z
        Integer representation of the values.

        Returns
        -------
        ndarray
            An ndarray with int64 dtype.
        rw   )r   rz   r   rq   rq   rr   r   ?  s   zDatetimeLikeArrayMixin.asi8r   )na_repdate_formatr   str | floatnpt.NDArray[np.object_]c                C  r   )z|
        Helper method for astype when converting to strings.

        Returns
        -------
        ndarray[str]
        r   )r~   r   r   rq   rq   rr   _format_native_typesO  s   
z+DatetimeLikeArrayMixin._format_native_typesboxedc                 C  s   dj S )Nz'{}')format)r~   r   rq   rq   rr   
_formatter[  s   z!DatetimeLikeArrayMixin._formatterNpDtype | Nonebool | Nonec                 C  s    t |rtjt| tdS | jS )Nry   )rC   npr]   listobjectr   )r~   ry   r   rq   rq   rr   	__array__b  s   z DatetimeLikeArrayMixin.__array__itemr1   c                 C     d S ro   rq   r~   r   rq   rq   rr   __getitem__j  r   z"DatetimeLikeArrayMixin.__getitem__(SequenceIndexer | PositionalIndexerTupler2   c                 C  r   ro   rq   r   rq   rq   rr   r   n  s   keyr/   Self | DTScalarOrNaTc                   s:   t dt |}t|r|S t t|}| ||_|S )z
        This getitem defers to the underlying array, which by-definition can
        only handle list-likes, slices, and integer scalars
        zUnion[Self, DTScalarOrNaT])r   superr   r   	is_scalarr2   _get_getitem_freq_freq)r~   r   r   	__class__rq   rr   r   u  s   

c                 C  s   t | jt}|r| j}|S | jdkrd}|S t| |}d}t |tr9| jdur4|jdur4|j| j }|S | j}|S |tu rB| j}|S t	
|rZt|tj}t |trZ| |S |S )z\
        Find the `freq` attribute to assign to the result of a __getitem__ lookup.
        r   N)rx   ry   rJ   r   r   r`   slicestepEllipsiscomis_bool_indexerr   maybe_booleans_to_slicerz   r   uint8r   )r~   r   	is_periodr   new_keyrq   rq   rr   r     s.   


	


z(DatetimeLikeArrayMixin._get_getitem_freq,int | Sequence[int] | Sequence[bool] | sliceNaTType | Any | Sequence[Any]c                   s.   t ||| }t || |rd S |   d S ro   )ra   r   __setitem___maybe_clear_freq)r~   r   r   no_opr   rq   rr   r     s
   z"DatetimeLikeArrayMixin.__setitem__c                 C  r   ro   rq   r   rq   rq   rr   r     s   z(DatetimeLikeArrayMixin._maybe_clear_freqTc                   s,  t |}|tkr;| jjdkr"td| } | j}t|| jd| jd}|S | jjdkr/t	| j
ddS | | j | jS t|trHt j||dS t|rP|  S |jd	v rq| j}|tjkritd
| j d| d|ro| }|S |jdv r{| j|ks|jdkrdt| j d| }t|tj| |dS )NMrj   	timestamp)tzboxresomT)r   r   iuzConverting from z to z? is not supported. Do obj.astype('int64').astype(dtype) insteadmMfzCannot cast z
 to dtype r   )rE   r   ry   kindr   r   r   r   _cresor   r   r   ravelreshapeshaperx   rI   r   astyperD   r   r   int64	TypeErrorr   type__name__asarray)r~   ry   r   i8data	convertedr   msgr   rq   rr   r     s@   



zDatetimeLikeArrayMixin.astypec                 C  r   ro   rq   r   rq   rq   rr   rz     r   zDatetimeLikeArrayMixin.viewLiteral['M8[ns]']rj   c                 C  r   ro   rq   r~   ry   rq   rq   rr   rz     r   Literal['m8[ns]']rl   c                 C  r   ro   rq   r   rq   rq   rr   rz     r   .r'   c                 C  r   ro   rq   r   rq   rq   rr   rz     r   c                   s   t  |S ro   )r   rz   r   r   rq   rr   rz     s   c              
   C  s  t |trz| |}W n ttfy   t|w t || js$|tu rE| |}z| 	| W |S  t
tfyD } zt||d }~ww t|sMt|t|t| krYtdz| j|dd}| 	| W |S  t
tfy } ztt|dd r{nt||W Y d }~|S d }~ww )NzLengths must matchT)allow_objectry   )rx   rn   r   
ValueErrorr   r9   r   r   r   r   r   rB   r   _validate_listlikerC   getattr)r~   r   errrq   rq   rr   _validate_comparison_value  s>   




z1DatetimeLikeArrayMixin._validate_comparison_value)allow_listlikeunboxr  r  c             
   C  s   t || jrnQt |tr+z| |}W nD ty* } z| ||}t||d}~ww t|| jr4t	}n$t
|rB| ||}t|t || jrN| |}n
| ||}t||s\|S | |S )a  
        Validate that the input value can be cast to our scalar_type.

        Parameters
        ----------
        value : object
        allow_listlike: bool, default False
            When raising an exception, whether the message should say
            listlike inputs are allowed.
        unbox : bool, default True
            Whether to unbox the result before returning.  Note: unbox=False
            skips the setitem compatibility check.

        Returns
        -------
        self._scalar_type or NaT
        N)rx   r   rn   r   r   _validation_error_messager   rM   ry   r   rN   r   r   )r~   r   r  r  r   r   rq   rq   rr   _validate_scalar0  s,   


z'DatetimeLikeArrayMixin._validate_scalarc                 C  sr   t |drt|dddkr|j d}n	dt|j d}|r,d| jj d| d}|S d| jj d	| d}|S )
a+  
        Construct an exception message on validation error.

        Some methods allow only scalar inputs, while others allow either scalar
        or listlike.

        Parameters
        ----------
        allow_listlike: bool, default False

        Returns
        -------
        str
        ry   r   r   z array'zvalue should be a 'z!', 'NaT', or array of those. Got z	 instead.z' or 'NaT'. Got )hasattrr   ry   r   r   r   )r~   r   r  msg_gotr   rq   rq   rr   r  m  s   	z0DatetimeLikeArrayMixin._validation_error_messager   c              	   C  s  t |t| r| jjdv r|s|j| jdd}|S t |tr.t|dkr.t| jg | jdS t	|drc|jt
krct|| jv rcz	t| |}W n ttfyb   |rX| Y S | |d}t|w t|dd}t|}t|dd}t|rzt| j|| jd}W n	 ty   Y nw t |jtr|jj| jkr| }t|dd}|rt|jrnt| |js| |d}t|| jjdv r|s|j| jdd}|S )	Nr   Fround_okr   r   ry   Textract_numpy)rx   r   ry   r   as_unitunitr   r   _from_sequencer  r   r   infer_dtyper   r   r   r  r_   pd_arrayr@   rG   
categories_internal_get_valuesrC   r   )r~   r   r   r   rq   rq   rr   r     sJ   	z)DatetimeLikeArrayMixin._validate_listlikec                 C  s,   t |r
| |}n| j|ddS | |S )NT)r  )rB   r   r  _unboxr   rq   rq   rr   _validate_setitem_value  s   
z.DatetimeLikeArrayMixin._validate_setitem_value6np.int64 | np.datetime64 | np.timedelta64 | np.ndarrayc                 C  s,   t |r| |}|S | | |j}|S )zZ
        Unbox either a scalar with _unbox_scalar or an instance of our own type.
        )r   r   r   r   r   r   rq   rq   rr   r    s   


zDatetimeLikeArrayMixin._unboxc                 C  s:   ddl m} t| ||d}||}t|tr| S |jS )Nr   rh   )	na_action)pandasri   rT   rx   rL   to_numpyr]   )r~   mapperr  ri   r   rq   rq   rr   map  s   
zDatetimeLikeArrayMixin.mapr   npt.NDArray[np.bool_]c              	   C  sj  |j jdv rtj| jtdS t|}t|t| sg d}|j t	krYt
j|d| j d}|j t	kr5| |S t
j|dd}||vrY|dkrEnd	|v rQt| t	|S tj| jtdS z	t| |}W n tys   t| t	| Y S w tjd
| j  dtt d | j jdv rtd| } || j}z| | W n ttfy   tj| jtd Y S w t| j|jS )z
        Compute boolean array of whether each value is found in the
        passed set of values.

        Parameters
        ----------
        values : np.ndarray or ExtensionArray

        Returns
        -------
        ndarray[bool]
        fiucr   )r   timedelta64r   
datetime64dateperiodT)convert_non_numericdtype_if_all_natFskipnastringmixedz"The behavior of 'isin' with dtype=z and castable values (e.g. strings) is deprecated. In a future version, these will not be considered matching by isin. Explicitly cast to the appropriate dtype before calling isin instead.
stacklevelr   DatetimeArray | TimedeltaArray)ry   r   r   zerosr   r   r^   rx   r   r   r   maybe_convert_objectsrS   r  r   r  r   warningswarnFutureWarningr>   r   r  r  r   r   r   )r~   r   	inferableinferredrq   rq   rr   rS     sN   



zDatetimeLikeArrayMixin.isinc                 C     | j S ro   )_isnanr   rq   rq   rr   rN   A  s   zDatetimeLikeArrayMixin.isnac                 C  s
   | j tkS )z-
        return if each value is nan
        )r   r   r   rq   rq   rr   r3  D     
zDatetimeLikeArrayMixin._isnanc                 C  s   t | j S )zJ
        return if I have any nans; enables various perf speedups
        )r   r3  anyr   rq   rq   rr   _hasnaK  s   zDatetimeLikeArrayMixin._hasnar   c                 C  s6   | j r|r
||}|du rtj}t|| j| |S )az  
        Parameters
        ----------
        result : np.ndarray
        fill_value : object, default iNaT
        convert : str, dtype or None

        Returns
        -------
        result : ndarray with values replace by the fill_value

        mask the result if needed, convert to the provided dtype if its not
        None

        This is an internal routine.
        N)r6  r   r   nanputmaskr3  )r~   r   
fill_valuer   rq   rq   rr   _maybe_mask_resultsR  s   
z*DatetimeLikeArrayMixin._maybe_mask_results
str | Nonec                 C  s   | j du rdS | j jS )a{  
        Return the frequency object as a string if it's set, otherwise None.

        Examples
        --------
        For DatetimeIndex:

        >>> idx = pd.DatetimeIndex(["1/1/2020 10:00:00+00:00"], freq="D")
        >>> idx.freqstr
        'D'

        The frequency can be inferred if there are more than 2 points:

        >>> idx = pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"],
        ...                        freq="infer")
        >>> idx.freqstr
        '2D'

        For PeriodIndex:

        >>> idx = pd.PeriodIndex(["2023-1", "2023-2", "2023-3"], freq="M")
        >>> idx.freqstr
        'M'
        N)r   freqstrr   rq   rq   rr   r<  p  s   
zDatetimeLikeArrayMixin.freqstrc                 C  s0   | j dkrdS zt| W S  ty   Y dS w )ax  
        Tries to return a string representing a frequency generated by infer_freq.

        Returns None if it can't autodetect the frequency.

        Examples
        --------
        For DatetimeIndex:

        >>> idx = pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"])
        >>> idx.inferred_freq
        '2D'

        For TimedeltaIndex:

        >>> tdelta_idx = pd.to_timedelta(["0 days", "10 days", "20 days"])
        >>> tdelta_idx
        TimedeltaIndex(['0 days', '10 days', '20 days'],
                       dtype='timedelta64[ns]', freq=None)
        >>> tdelta_idx.inferred_freq
        '10D'
        r   N)r   re   
infer_freqr   r   rq   rq   rr   inferred_freq  s   
z$DatetimeLikeArrayMixin.inferred_freqResolution | Nonec                 C  s4   | j }|d u r	d S zt|W S  ty   Y d S w ro   )r<  r   get_reso_from_freqstrKeyError)r~   r<  rq   rq   rr   _resolution_obj  s   z&DatetimeLikeArrayMixin._resolution_objc                 C  s   | j jS )zO
        Returns day, hour, minute, second, millisecond or microsecond
        )rB  attrnamer   rq   rq   rr   
resolution  s   z!DatetimeLikeArrayMixin.resolutionc                 C     t j| jddd S )NTtimeliker   r   is_monotonicr   r   rq   rq   rr   _is_monotonic_increasing     z/DatetimeLikeArrayMixin._is_monotonic_increasingc                 C  rE  )NTrF  r   rH  r   rq   rq   rr   _is_monotonic_decreasing  rK  z/DatetimeLikeArrayMixin._is_monotonic_decreasingc                 C  s   t t| jd| jkS )NK)r   rU   r   r   sizer   rq   rq   rr   
_is_unique  s   z!DatetimeLikeArrayMixin._is_uniquec           
      C  s  | j dkrt|dd | jkr||  | | jS z| |}W n ty1   t| || Y S w t|dd }t|rKt	
|t| t|}|S |tu rh|tju r^tj| jtd}|S tj| jtd}|S t| jtstt| } | j|jkrt|t| sz
|j| jdd}W n  ty   t|j }t!| j"|| Y S w |j"}t!| j"||S | #|}|| j"$d|$d}t%|}| j&|B }|' r|tju }	t(|||	 |S )Nr   r   ry   r   Fr	  rw   ))r   r   r   r   r   r  r9   rc   rC   rR   comp_method_OBJECT_ARRAYr   r   r   r   r   operatorneonesr   r+  rx   ry   rJ   r   TimelikeOpsr   r   r  r  r   r]   asm8r$   r   r  rz   rN   r3  r5  r8  )
r~   r   rp   ry   r   	other_arr
other_valso_maskmask
nat_resultrq   rq   rr   _cmp_method  sR   




z"DatetimeLikeArrayMixin._cmp_method__pow____rpow____mul____rmul____truediv____rtruediv____floordiv____rfloordiv____mod____rmod__
__divmod____rdivmod__@tuple[int | npt.NDArray[np.int64], None | npt.NDArray[np.bool_]]c                 C  sP   t |tr|j}d}||fS t |ttfr|j}d}||fS |j}|j}||fS )zN
        Get the int64 values and b_mask to pass to add_overflowsafe.
        N)rx   r   ordinalr   r   r|   r3  r   )r~   r   i8valuesrY  rq   rq   rr   _get_i8_values_and_mask  s   
z.DatetimeLikeArrayMixin._get_i8_values_and_maskc                 C  s6   t | jtr	| jS t|sdS t | jtr| jS dS )zP
        Check if we can preserve self.freq in addition or subtraction.
        N)rx   ry   rJ   r   r   r   r   r   rq   rq   rr   _get_arithmetic_result_freq*  s   
z2DatetimeLikeArrayMixin._get_arithmetic_result_freqc           
      C  s(  t | jdstdt| j dt|j td| } ddlm} ddl	m
} |tus.J t|rI| jt d| j d	 }|j||jd
S t|}| |\} }td| } | |\}}t| jtj|dd
}|d| j d	}||j| jd}|d| j d	}| |}	|j|||	dS )Nr   cannot add  and rl   r   rj   )tz_to_dtypezM8[]r   rw   r   r  ry   r   )r   is_np_dtypery   r   r   r   r   pandas.core.arraysrj   pandas.core.arrays.datetimesrp  r   rN   r   to_datetime64r   r  _simple_newr   _ensure_matching_resosrk  r   r   r   r   rz   r   rl  )
r~   r   rj   rp  r   other_i8rX  
res_valuesry   new_freqrq   rq   rr   _add_datetimelike_scalar:  s*   


z/DatetimeLikeArrayMixin._add_datetimelike_scalarc                 C  s6   t | jdstdt| j dt|j ||  S )Nr   rm  rn  )r   rt  ry   r   r   r   r   rq   rq   rr   _add_datetime_arraylike\  s
   z.DatetimeLikeArrayMixin._add_datetime_arraylikedatetime | np.datetime64c                 C  sZ   | j jdkrtdt| j td| } t|r| t S t|}| 	|\} }| 
|S )Nr   "cannot subtract a datelike from a rj   )ry   r   r   r   r   r   rN   r   r   ry  _sub_datetimelike)r~   r   tsrq   rq   rr   _sub_datetimelike_scalarf  s   

z/DatetimeLikeArrayMixin._sub_datetimelike_scalarc                 C  sZ   | j jdkrtdt| j t| t|krtdtd| } | |\} }| 	|S )Nr   r  $cannot add indices of unequal lengthrj   )
ry   r   r   r   r   r   r   r   ry  r  r   rq   rq   rr   _sub_datetime_arraylikey  s   

z.DatetimeLikeArrayMixin._sub_datetime_arraylikeTimestamp | DatetimeArrayc           
   
   C  s   t d| } ddlm} z| | W n ty- } zt|dd}t|||d }~ww | |\}}t	| j
tj| dd}|d| j d	}| |}	t d
|	}	|j||j|	dS )Nrj   r   rl   comparesubtractrw   r   timedelta64[rq  zTick | Noners  )r   ru  rl   _assert_tzawareness_compatr   rn   replacer   rk  r   r   r   r   rz   r  rl  rx  ry   )
r~   r   rl   r   new_messagerz  rX  r{  res_m8r|  rq   rq   rr   r    s   


z(DatetimeLikeArrayMixin._sub_datetimeliker   rk   c                 C  s\   t | jdstdt| j ddlm} t	|j
| j}t|j}|||d}||  S )Nr   zcannot add Period to a r   )rk   r   )r   rt  ry   r   r   r   pandas.core.arrays.periodrk   r   broadcast_tori  r   rJ   r   )r~   r   rk   i8valsry   parrrq   rq   rr   _add_period  s   
z"DatetimeLikeArrayMixin._add_periodc                 C  r   ro   r   )r~   offsetrq   rq   rr   _add_offset  s   z"DatetimeLikeArrayMixin._add_offsetc                 C  sj   t |r tj| jdd| jj}|t t	| j
|| jdS td| } t|}| |\} }| |S )zk
        Add a delta of a timedeltalike

        Returns
        -------
        Same type as self
        rw   r   r*  )rN   r   emptyr   rz   r   ry   fillr   r   rx  r   r   ry  _add_timedeltalike)r~   r   
new_valuesrq   rq   rr   _add_timedeltalike_scalar  s   


z0DatetimeLikeArrayMixin._add_timedeltalike_scalarc                 C  s:   t | t |krtdtd| } | |\} }| |S )zl
        Add a delta of a TimedeltaIndex

        Returns
        -------
        Same type as self
        r  r*  )r   r   r   ry  r  r   rq   rq   rr   _add_timedelta_arraylike  s
   


z/DatetimeLikeArrayMixin._add_timedelta_arraylikeTimedelta | TimedeltaArrayc                 C  s\   t d| } | |\}}t| jtj|dd}|| jj}| 	|}t
| j|| j|dS )Nr*  rw   r   rs  )r   rk  r   r   r   r   rz   r   ry   rl  r   rx  )r~   r   rz  rX  r  r{  r|  rq   rq   rr   r    s   

z)DatetimeLikeArrayMixin._add_timedeltalikec                 C  sv   t | jtrtdt| j dttj td| } tj	| j
tjd}|t || jj}t| j|| jddS )z$
        Add pd.NaT to self
        zCannot add rn  zTimedeltaArray | DatetimeArrayr   Nrs  )rx   ry   rJ   r   r   r   r   r   r   r  r   r   r  r   rz   r   rx  r~   r   rq   rq   rr   _add_nat  s   

zDatetimeLikeArrayMixin._add_natc                 C  sP   t j| jt jd}|t | jjdv r#td| } |	d| j
 dS |	dS )z+
        Subtract pd.NaT from self
        r   r   zDatetimeArray| TimedeltaArrayr  rq  ztimedelta64[ns])r   r  r   r   r  r   ry   r   r   rz   r  r  rq   rq   rr   _sub_nat  s   


zDatetimeLikeArrayMixin._sub_natPeriod | PeriodArrayc                   s   t  jtstdt|j dt j td   |  |\}}t	 j
tj| dd}t fdd|D }|d u rG j}n j|B }t||< |S )Ncannot subtract  from rk   rw   r   c                   s   g | ]} j j| qS rq   )r   baser   r   r   rq   rr   
<listcomp>      z:DatetimeLikeArrayMixin._sub_periodlike.<locals>.<listcomp>)rx   ry   rJ   r   r   r   r   r   rk  r   r   r   r   r]   r3  r   )r~   r   rz  rX  new_i8_datanew_datarY  rq   r   rr   _sub_periodlike  s   


z&DatetimeLikeArrayMixin._sub_periodlikec                 C  s   |t jt jfv s
J t|dkr| jdkr|| |d S tjdt| j dt	t
 d | j|jks:J | j|jf|| dt|}|S )aZ  
        Add or subtract array-like of DateOffset objects

        Parameters
        ----------
        other : np.ndarray[object]
        op : {operator.add, operator.sub}

        Returns
        -------
        np.ndarray[object]
            Except in fastpath case with length 1 where we operate on the
            contained scalar.
        r   r   z)Adding/subtracting object-dtype array to z not vectorized.r(  O)rQ  addsubr   r   r-  r.  r   r   r:   r>   r   r   r   r   )r~   r   rp   r{  rq   rq   rr   _addsub_object_array%  s   z+DatetimeLikeArrayMixin._addsub_object_arrayr$  namer%  c                K  sV   |dvrt d| dt|  tt|}||  fd|i|}t| j|| jdS )N>   cummaxcumminzAccumulation z not supported for r%  r   )r   r   r   rV   r   rx  ry   )r~   r  r%  r   rp   r   rq   rq   rr   _accumulateI  s
   
z"DatetimeLikeArrayMixin._accumulate__add__c                 C  s  t |dd }t|}|tu r|  }nt|tttjfr"| 	|}nt|t
r-| |}nt|ttjfr;| |}n{t|trMt| jdrM| |}nit|rmt| jts\t| td| }|||jj tj}nIt|dry| |}n=t|r| |tj}n1t|dst|tr|  |S t!|rt| jtst| td| }|||jj tj}nt"S t|tj#rt|jdrddl$m%} |&|S |S )Nry   r   rk   r   r   r  )'r   r^   r   r  rx   r   r   r   r  r  r   r  r   r  r}  r   r   rt  ry   r  
is_integerrJ   r&   r   _addsub_int_array_or_scalar_nrQ  r  r  rC   r  rH   r~  rA   NotImplementedndarrayru  rl   r  r~   r   other_dtyper   objrl   rq   rq   rr   r  R  sF   






zDatetimeLikeArrayMixin.__add__c                 C  s
   |  |S ro   )r  r   rq   rq   rr   __radd__  s   
zDatetimeLikeArrayMixin.__radd____sub__c                 C  s  t |dd }t|}|tu r|  }nt|tttjfr#| 	| }nt|t
r/| | }nt|ttjfr=| |}nt|r]t| jtsLt| td| }|||jj tj}nat|trh| |}nVt|dru| | }nIt|r| |tj}n=t|dst|tr|  |}n,t|tr| |}n!t!|rt| jtst| td| }|||jj tj}nt"S t|tj#rt|jdrddl$m%} |&|S |S )Nry   rk   r   r   r   r  )'r   r^   r   r  rx   r   r   r   r  r  r   r  r   r  r  r   r  ry   rJ   r&   r   r  r  rQ  r  r   r  rt  r  rC   r  rH   r  rA   r  r  ru  rl   r  r  rq   rq   rr   r    sJ   







zDatetimeLikeArrayMixin.__sub__c                 C  s  t |dd }t|dpt|t}|r9t| jdr9t|r%t||  S t|ts5ddl	m
} ||}||  S | jjdkrVt|drV|sVtdt| j dt|j t| jtrpt|drptdt| j d|j t| jdrtd| } |  | S | |  S )	Nry   r   r   r   ro  r  r  rl   )r   r   rt  rx   rH   ry   r   r   r   ru  rj   r  r   r  r   r   r   rJ   r   )r~   r   r  other_is_dt64rj   rq   rq   rr   __rsub__  s*   





zDatetimeLikeArrayMixin.__rsub__c                 C  s4   | | }|d d  | d d < t | jts|j| _| S ro   rx   ry   rJ   r   r   r~   r   r   rq   rq   rr   __iadd__  
   zDatetimeLikeArrayMixin.__iadd__c                 C  s4   | | }|d d  | d d < t | jts|j| _| S ro   r  r  rq   rq   rr   __isub__  r  zDatetimeLikeArrayMixin.__isub__qsnpt.NDArray[np.float64]interpolationc                   s   t  j||dS )N)r  r  )r   	_quantile)r~   r  r  r   rq   rr   r    s   z DatetimeLikeArrayMixin._quantileaxisr%  r  AxisInt | Nonec                K  8   t d| t || j tj| j||d}| ||S )a  
        Return the minimum value of the Array or minimum along
        an axis.

        See Also
        --------
        numpy.ndarray.min
        Index.min : Return the minimum value in an Index.
        Series.min : Return the minimum value in a Series.
        rq   r  )nvvalidate_minvalidate_minmax_axisr   rQ   nanminr   _wrap_reduction_resultr~   r  r%  r   r   rq   rq   rr   min     zDatetimeLikeArrayMixin.minc                K  r  )a  
        Return the maximum value of the Array or maximum along
        an axis.

        See Also
        --------
        numpy.ndarray.max
        Index.max : Return the maximum value in an Index.
        Series.max : Return the maximum value in a Series.
        rq   r  )r  validate_maxr  r   rQ   nanmaxr   r  r  rq   rq   rr   max  r  zDatetimeLikeArrayMixin.maxr   )r%  r  c                C  sF   t | jtrtdt| j dtj| j||| 	 d}| 
||S )a  
        Return the mean value of the Array.

        Parameters
        ----------
        skipna : bool, default True
            Whether to ignore any NaT elements.
        axis : int, optional, default 0

        Returns
        -------
        scalar
            Timestamp or Timedelta.

        See Also
        --------
        numpy.ndarray.mean : Returns the average of array elements along a given axis.
        Series.mean : Return the mean value in a Series.

        Notes
        -----
        mean is only defined for Datetime and Timedelta dtypes, not for Period.

        Examples
        --------
        For :class:`pandas.DatetimeIndex`:

        >>> idx = pd.date_range('2001-01-01 00:00', periods=3)
        >>> idx
        DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'],
                      dtype='datetime64[ns]', freq='D')
        >>> idx.mean()
        Timestamp('2001-01-02 00:00:00')

        For :class:`pandas.TimedeltaIndex`:

        >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='D')
        >>> tdelta_idx
        TimedeltaIndex(['1 days', '2 days', '3 days'],
                        dtype='timedelta64[ns]', freq=None)
        >>> tdelta_idx.mean()
        Timedelta('2 days 00:00:00')
        zmean is not implemented for zX since the meaning is ambiguous.  An alternative is obj.to_timestamp(how='start').mean()r  r%  rY  )rx   ry   rJ   r   r   r   rQ   nanmeanr   rN   r  )r~   r%  r  r   rq   rq   rr   mean)  s   ,zDatetimeLikeArrayMixin.meanc                K  sH   t d| |d urt|| jkrtdtj| j||d}| ||S )Nrq   z abs(axis) must be less than ndimr  )	r  validate_medianabsr   r   rQ   	nanmedianr   r  r  rq   rq   rr   medianb  s
   zDatetimeLikeArrayMixin.mediandropnac                 C  sH   d }|r|   }tj| d|d}|| jj}ttj|}| 	|S )Nrw   )rY  )
rN   rO   moderz   r   ry   r   r   r  r}   )r~   r  rY  i8modesnpmodesrq   rq   rr   _model  s   
zDatetimeLikeArrayMixin._modehowhas_dropped_na	min_countintngroupsidsnpt.NDArray[np.intp]c                K  s  | j }|jdkr)|dv rtd| d|dv r(tjd| d| dtt d	 n2t|trO|dv r:td
| d|dv rNtjd| d| dtt d	 n|dv r[td| d| j	
d}ddlm}	 |	|}
|	||
|d}|j|f|||d d|}|j|jv r|S |j dksJ |dv rddlm} t| j trtdtd| } d| j d}|
|}|j||j dS |
| j	j }| |S )Nr   )sumprodcumsumcumprodvarskewz!datetime64 type does not support z operations)r5  allr  zh' with datetime64 dtypes is deprecated and will raise in a future version. Use (obj != pd.Timestamp(0)).z() instead.r(  zPeriod type does not support ze' with PeriodDtype is deprecated and will raise in a future version. Use (obj != pd.Period(0, freq)).)r  r  r  r  z"timedelta64 type does not support rv   r   )WrappedCythonOp)r  r   r  )r  r  comp_idsrY  )stdsemr  z-'std' and 'sem' are not valid for PeriodDtyper*  zm8[rq  r   )ry   r   r   r-  r.  r/  r>   rx   rJ   r   rz   pandas.core.groupby.opsr  get_kind_from_how_cython_op_ndim_compatr  cast_blocklistru  rl   r   r  rx  r}   )r~   r  r  r  r  r  r   ry   npvaluesr  r   rp   r{  rl   	new_dtyperq   rq   rr   _groupby_opy  sl   



	


z"DatetimeLikeArrayMixin._groupby_opru   r   )NNF)ry   r   r   r   ru   r   )ru   r   )r   rn   ru   r   )r   r   ru   r   )r   r   ru   r   ru   r   )ru   rf   )ru   r   )r   r   ru   r   )F)r   r   )NN)ry   r   r   r   ru   r   )r   r1   ru   r   )r   r   ru   r2   )r   r/   ru   r   )ru   r   )r   r   r   r   ru   r   ru   r   T)r   r   ru   r2   )ry   r   ru   rj   )ry   r   ru   rl   ).)ry   r   ru   r'   ro   )r  r   r  r   )r  r   ru   rn   )r   r   )ru   r  )r   r'   ru   r  )ru   r  )r   r   ru   r   )ru   r;  )ru   r?  ru   rn   )ru   rh  )ru   rj   )r   rj   ru   rj   )r   r  ru   rl   )r   rj   ru   rl   )r   r  ru   rl   )r   r   ru   rk   )r   rl   )r   r  )r   r  ru   r   )r   r   )r  rn   r%  r   ru   r2   )r  r  r  rn   ru   r2   )r  r  r%  r   )r%  r   r  r  )r  r   )
r  rn   r  r   r  r  r  r  r  r  )`r   
__module____qualname____doc____annotations__r=   r   r   propertyr   r   r   r   r{   r   r   r   r   r   r   r   r   r   r   r   r   rz   r  r  r  r   r  r   r  rY   r  rS   rN   r3  r6  r   r:  r<  r>  rB  rD  rJ  rL  rO  r[  rs   r\  r]  r^  r_  r`  ra  rb  rc  rd  re  rf  rg  rk  rl  r}  r~  r  r  r  r  r  r  r  r  r  r  r  r  r  rb   r  r  r  r  r  r  r   r  r  r  r  r  r  r  __classcell__rq   rq   r   rr   r      s  
 





3	(=:U	
9!	

#	
7
7"	9	r   c                   @  s$   e Zd ZdZeddddd	Zd
S )DatelikeOpszK
    Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex.
    zNhttps://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)URLr   rn   ru   r   c                 C  s   | j |tjd}|jtddS )a  
        Convert to Index using specified date_format.

        Return an Index of formatted strings specified by date_format, which
        supports the same string format as the python standard library. Details
        of the string format can be found in `python string format
        doc <%(URL)s>`__.

        Formats supported by the C `strftime` API but not by the python string format
        doc (such as `"%%R"`, `"%%r"`) are not officially supported and should be
        preferably replaced with their supported equivalents (such as `"%%H:%%M"`,
        `"%%I:%%M:%%S %%p"`).

        Note that `PeriodIndex` support additional directives, detailed in
        `Period.strftime`.

        Parameters
        ----------
        date_format : str
            Date format string (e.g. "%%Y-%%m-%%d").

        Returns
        -------
        ndarray[object]
            NumPy ndarray of formatted strings.

        See Also
        --------
        to_datetime : Convert the given argument to datetime.
        DatetimeIndex.normalize : Return DatetimeIndex with times to midnight.
        DatetimeIndex.round : Round the DatetimeIndex to the specified freq.
        DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq.
        Timestamp.strftime : Format a single Timestamp.
        Period.strftime : Format a single Period.

        Examples
        --------
        >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
        ...                     periods=3, freq='s')
        >>> rng.strftime('%%B %%d, %%Y, %%r')
        Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',
               'March 10, 2018, 09:00:02 AM'],
              dtype='object')
        )r   r   Fr   )r   r   r7  r   r   )r~   r   r   rq   rq   rr   strftime  s   1zDatelikeOps.strftimeN)r   rn   ru   r   )r   r  r  r  r<   r
  rq   rq   rq   rr   r    s    r  aO	  
    Perform {op} operation on the data to the specified `freq`.

    Parameters
    ----------
    freq : str or Offset
        The frequency level to {op} the index to. Must be a fixed
        frequency like 'S' (second) not 'ME' (month end). See
        :ref:`frequency aliases <timeseries.offset_aliases>` for
        a list of possible `freq` values.
    ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
        Only relevant for DatetimeIndex:

        - 'infer' will attempt to infer fall dst-transition hours based on
          order
        - bool-ndarray where True signifies a DST time, False designates
          a non-DST time (note that this flag is only applicable for
          ambiguous times)
        - 'NaT' will return NaT where there are ambiguous times
        - 'raise' will raise an AmbiguousTimeError if there are ambiguous
          times.

    nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, default 'raise'
        A nonexistent time does not exist in a particular timezone
        where clocks moved forward due to DST.

        - 'shift_forward' will shift the nonexistent time forward to the
          closest existing time
        - 'shift_backward' will shift the nonexistent time backward to the
          closest existing time
        - 'NaT' will return NaT where there are nonexistent times
        - timedelta objects will shift nonexistent times by the timedelta
        - 'raise' will raise an NonExistentTimeError if there are
          nonexistent times.

    Returns
    -------
    DatetimeIndex, TimedeltaIndex, or Series
        Index of the same type for a DatetimeIndex or TimedeltaIndex,
        or a Series with the same index for a Series.

    Raises
    ------
    ValueError if the `freq` cannot be converted.

    Notes
    -----
    If the timestamps have a timezone, {op}ing will take place relative to the
    local ("wall") time and re-localized to the same timezone. When {op}ing
    near daylight savings time, use ``nonexistent`` and ``ambiguous`` to
    control the re-localization behavior.

    Examples
    --------
    **DatetimeIndex**

    >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
    >>> rng
    DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
                   '2018-01-01 12:01:00'],
                  dtype='datetime64[ns]', freq='min')
    a  >>> rng.round('h')
    DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
                   '2018-01-01 12:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Series**

    >>> pd.Series(rng).dt.round("h")
    0   2018-01-01 12:00:00
    1   2018-01-01 12:00:00
    2   2018-01-01 12:00:00
    dtype: datetime64[ns]

    When rounding near a daylight savings time transition, use ``ambiguous`` or
    ``nonexistent`` to control how the timestamp should be re-localized.

    >>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam")

    >>> rng_tz.floor("2h", ambiguous=False)
    DatetimeIndex(['2021-10-31 02:00:00+01:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)

    >>> rng_tz.floor("2h", ambiguous=True)
    DatetimeIndex(['2021-10-31 02:00:00+02:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
    a  >>> rng.floor('h')
    DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
                   '2018-01-01 12:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Series**

    >>> pd.Series(rng).dt.floor("h")
    0   2018-01-01 11:00:00
    1   2018-01-01 12:00:00
    2   2018-01-01 12:00:00
    dtype: datetime64[ns]

    When rounding near a daylight savings time transition, use ``ambiguous`` or
    ``nonexistent`` to control how the timestamp should be re-localized.

    >>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam")

    >>> rng_tz.floor("2h", ambiguous=False)
    DatetimeIndex(['2021-10-31 02:00:00+01:00'],
                 dtype='datetime64[ns, Europe/Amsterdam]', freq=None)

    >>> rng_tz.floor("2h", ambiguous=True)
    DatetimeIndex(['2021-10-31 02:00:00+02:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
    a  >>> rng.ceil('h')
    DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
                   '2018-01-01 13:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Series**

    >>> pd.Series(rng).dt.ceil("h")
    0   2018-01-01 12:00:00
    1   2018-01-01 12:00:00
    2   2018-01-01 13:00:00
    dtype: datetime64[ns]

    When rounding near a daylight savings time transition, use ``ambiguous`` or
    ``nonexistent`` to control how the timestamp should be re-localized.

    >>> rng_tz = pd.DatetimeIndex(["2021-10-31 01:30:00"], tz="Europe/Amsterdam")

    >>> rng_tz.ceil("h", ambiguous=False)
    DatetimeIndex(['2021-10-31 02:00:00+01:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)

    >>> rng_tz.ceil("h", ambiguous=True)
    DatetimeIndex(['2021-10-31 02:00:00+02:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
    c                      s  e Zd ZU dZded< dejdfded
dZedd Z	e
dd ZejdfddZedgddZeedhddZediddZedjdd Zedkd"d#Zdldmd'd(Zd)d* Zdn fd.d/Zd0d1 Zeee jd2d3	4	4dodpd9d:Zeee jd;d3	4	4dodpd<d=Zeee jd>d3	4	4dodpd?d@Z dd$dAdqdEdFZ!dd$dAdqdGdHZ"dfdIdJZ#drdKdLZ$ds fdNdOZ%	$	dtdu fdRdSZ&e	Tdvdw fdXdYZ'dxdy fd\d]Z(dzdadbZ)e
d{dcddZ*  Z+S )|rT  zK
    Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex.
    znp.dtype_default_dtypeNFr   r   ru   r   c           	      C  s  t jt| j dtt d |d urt|}t|dd}t|t	r)|j
dtd}t|dd }|d u }|tjur:|nd }t|t| rx|rFn|d u rN|j}n|r]|jr]t|}t||j}|d urq||jkrqtd| d	|j |j}|j}n'|d u rt|tjr|jjd
v r|j}n| j}t|tjr|jdkr||}t|tjstdt|j dt| j d|jdvrtd|jdkr|d u r| j}|| j}n#t|dr||}nt|tr| jj}| d|j d}||}| ||}|dkrtdt| j d|r|  }|r*t|}|jjdkr*t|t!s*tdt"j#| ||d || _$|d u rI|d urKt| %| | d S d S d S )NzV.__init__ is deprecated and will be removed in a future version. Use pd.array instead.r(  Tr  r   na_valuer   dtype=z does not match data dtype Mmrw   zUnexpected type 'z'. 'values' must be a z6, ndarray, or Series or Index containing one of those.)r      z.Only 1-dimensional input arrays are supported.r   8[rq  inferz#Frequency inference not allowed in z$.__init__. Use 'pd.array()' instead.r   (TimedeltaArray/Index freq must be a Tick)r   ry   )&r-  r.  r   r   r/  r>   rE   r_   rx   r\   r  r   r   r   
no_defaultr   r!   _validate_inferred_freqry   r   r   r   r  r   r  rz   r   r   rt  rH   r  _validate_dtyper   r   r   r   r   _validate_frequency)	r~   r   ry   r   r   r>  explicit_noner   r  rq   rq   rr   r     s   







zTimelikeOps.__init__c                 C  r   ro   r   )clsr   ry   rq   rq   rr   r    s   zTimelikeOps._validate_dtypec                 C  r2  )zK
        Return the frequency object if it is set, otherwise None.
        r   r   rq   rq   rr   r     s   zTimelikeOps.freqc                 C  sV   |d ur&t |}| | | | jjdkrt|tstd| jdkr&td|| _	d S )Nr   r  r   zCannot set freq with ndim > 1)
r!   r  ry   r   rx   r   r   r   r   r   r   rq   rq   rr   r     s   

validate_kwdsdictc                 C  s   |du r	d| _ dS |dkr| j du rt| j| _ dS dS |tju r#dS | j du r=t|}t| j| |fi | || _ dS t|}t|| j  dS )z
        Constructor helper to pin the appropriate `freq` attribute.  Assumes
        that self._freq is currently set to any freq inferred in
        _from_sequence_not_strict.
        Nr  )r   r!   r>  r   r  r   r  r  )r~   r   r  rq   rq   rr   _maybe_pin_freq  s   




zTimelikeOps._maybe_pin_freqr   r   c              
   K  s   |j }|jdks||jkrdS z | jd|d dt|||jd|}t|j|js-t	W dS  t	yO } zdt
|v r?|t	d| d|j |d}~ww )am  
        Validate that a frequency is compatible with the values of a given
        Datetime Array/Index or Timedelta Array/Index

        Parameters
        ----------
        index : DatetimeIndex or TimedeltaIndex
            The index on which to determine if the given frequency is valid
        freq : DateOffset
            The frequency to validate
        r   N)startendperiodsr   r  z	non-fixedInferred frequency 9 from passed values does not conform to passed frequency rq   )r>  rN  r<  _generate_ranger   r  r   array_equalr   r   rn   )r  indexr   r   r1  on_freqr   rq   rq   rr   r  0  s8   zTimelikeOps._validate_frequencyr   
int | Noner2   c                 O  r   ro   r   )r  r  r  r   r   r   r   rq   rq   rr   r#  \  r   zTimelikeOps._generate_ranger  c                 C  s   t | jjS ro   )r   r   ry   r   rq   rq   rr   r   d  s   zTimelikeOps._cresorn   c                 C  s
   t | jS ro   )dtype_to_unitry   r   rq   rq   rr   r  h  r4  zTimelikeOps.unitTr  r
  c                 C  s~   |dvrt dt| jj d| d}t| j||d}t| jtjr(|j}ntd| j}t	||d}t
| j||| jdS )	N)smsusnsz)Supported units are 's', 'ms', 'us', 'ns'r  rq  r	  rj   rr  rs  )r   r   ry   r   r   r   rx   r   r   rH   r   rx  r   )r~   r  r
  ry   r  r  r   rq   rq   rr   r  o  s   zTimelikeOps.as_unitc                 C  s@   | j |j kr| j |j k r| |j} | |fS || j}| |fS ro   )r   r  r  r   rq   rq   rr   ry    s   z"TimelikeOps._ensure_matching_resosufuncnp.ufuncmethodc                   s`   |t jt jt jfv r"t|dkr"|d | u r"t||| jfi |S t j||g|R i |S )Nr   r   )	r   isnanisinfisfiniter   r   r   r   __array_ufunc__)r~   r-  r/  inputsr   r   rq   rr   r3    s
   zTimelikeOps.__array_ufunc__c           
      C  s   t | jtr!td| } | d }|||||}|j| j||dS | d}ttj	|}t
|| j}|dkr:|  S t|||}	| j|	td}|| jj}| j|| jdS )Nrj   )	ambiguousnonexistentrw   r   r9  r   )rx   ry   rH   r   tz_localize_roundr   rz   r   r  r%   r   r   r#   r:  r   r   rx  )
r~   r   r  r5  r6  naiver   r   nanos	result_i8rq   rq   rr   r9    s    


zTimelikeOps._roundround)rp   raiser5  r4   r6  r5   c                 C     |  |tj||S ro   )r9  r"   NEAREST_HALF_EVENr~   r   r5  r6  rq   rq   rr   r=       zTimelikeOps.roundfloorc                 C  r?  ro   )r9  r"   MINUS_INFTYrA  rq   rq   rr   rC    rB  zTimelikeOps.floorceilc                 C  r?  ro   )r9  r"   
PLUS_INFTYrA  rq   rq   rr   rE    rB  zTimelikeOps.ceilr  r  r  r%  c                C     t j| j|||  dS Nr  )rQ   nananyr   rN   r~   r  r%  rq   rq   rr   r5    s   zTimelikeOps.anyc                C  rG  rH  )rQ   nanallr   rN   rJ  rq   rq   rr   r    s   zTimelikeOps.allc                 C  s
   d | _ d S ro   r  r   rq   rq   rr   r     s   
zTimelikeOps._maybe_clear_freqc                 C  sh   |du rn&t | dkr t|tr | jjdkrt|tstdn|dks&J t| j}| 	 }||_
|S )z
        Helper to get a view on the same data, with a new freq.

        Parameters
        ----------
        freq : DateOffset, None, or "infer"

        Returns
        -------
        Same type as self
        Nr   r   r  r  )r   rx   r   ry   r   r   r   r!   r>  rz   r   )r~   r   r   rq   rq   rr   
_with_freq  s   
zTimelikeOps._with_freqr   c                   s   t | jtjr
| jS t  S ro   )rx   ry   r   r   r   _values_for_jsonr   r   rq   rr   rM    s   
zTimelikeOps._values_for_jsonuse_na_sentinelsortc                   s   | j d ur-tjt| tjd}|  }|r)| j jdk r)|d d d }|d d d }||fS |r:tdt| j	 dt
 j|dS )Nr   r   zThe 'sort' keyword in zu.factorize is ignored unless arr.freq is not None. To factorize with sort, call pd.factorize(obj, sort=True) instead.)rN  )r   r   aranger   intpr   r   NotImplementedErrorr   r   r   	factorize)r~   rN  rO  codesuniquesr   rq   rr   rT  	  s   
zTimelikeOps.factorizer   	to_concatSequence[Self]r(   c                   s   t  ||}|d  |dkrDdd |D } jd urDt fdd|D rDt|d d |dd  }t fdd|D rD j}||_|S )	Nr   c                 S  s   g | ]}t |r|qS rq   )r   r  rq   rq   rr   r  (	  r  z1TimelikeOps._concat_same_type.<locals>.<listcomp>c                 3  s    | ]	}|j  j kV  qd S ro   r   r  r  rq   rr   r   *	  s    z0TimelikeOps._concat_same_type.<locals>.<genexpr>rP  r   c                 3  s.    | ]}|d  d  j  |d d  kV  qdS )r   rP  r   NrY  )r   pairrZ  rq   rr   r   ,	  s   , )r   _concat_same_typer   r  zipr   )r  rW  r  new_objpairsr|  r   rZ  rr   r\  	  s    zTimelikeOps._concat_same_typeCorderc                   s   t  j|d}| j|_|S )N)ra  )r   r   r   r   )r~   ra  r^  r   rq   rr   r   1	  s   zTimelikeOps.copyr-   r%  ri   c          
   	   K  s^   |dkrt |s| j}	n| j }	tj|	f||||||d| |s%| S t| j|	| jdS )z2
        See NDFrame.interpolate.__doc__.
        linear)r/  r  r%  limitlimit_direction
limit_arear   )rS  r   r   rP   interpolate_2d_inplacer   rx  ry   )
r~   r/  r  r%  rc  rd  re  r   r   out_datarq   rq   rr   interpolate6	  s(   

zTimelikeOps.interpolatec                 C  sP   t | jsdS | j}|tk}t| j}t|}t||| dk	 dk}|S )z
        Check if we are round times at midnight (and no timezone), which will
        be given a more compact __repr__ than other cases. For TimedeltaArray
        we are checking for multiples of 24H.
        Fr   )
r   rt  ry   r   r   r   r    r   logical_andr  )r~   
values_intconsider_valuesr   ppd	even_daysrq   rq   rr   _is_dates_only_	  s   
zTimelikeOps._is_dates_only)r   r   ru   r   r  )r  r  )r   r   )r   r'  ru   r2   )ru   r  r  r  )r  rn   r
  r   ru   r2   )r-  r.  r/  rn   )r>  r>  )r5  r4   r6  r5   ru   r2   )r  r  r%  r   ru   r   r   r  )TF)rN  r   rO  r   )r   )rW  rX  r  r(   ru   r2   )r`  )ra  rn   ru   r2   )
r/  r-   r  r  r%  ri   r   r   ru   r2   r  ),r   r  r  r  r  r   r  r   classmethodr  r  r   setterr   r  r  r#  r=   r   r  r  ry  r3  r9  r;   
_round_doc_round_exampler   r=  _floor_examplerC  _ceil_examplerE  r5  r  r   rL  rM  rT  r\  r   rh  rn  r  rq   rq   r   rr   rT    sj   
 \

 *

 
)rT  r   r   cls_nametuple[ArrayLike, bool]c                 C  s  t | dst| ttfst| dkrt| } t| } d}nt| tr+td| dt	| dd} t| t
sAt| trN| jjdv rN| jd	td
} d}| |fS t| tra|  } |  } d}| |fS t| tjtfsrt| } | |fS t| tr| jj| jtdj} d}| |fS )Nry   r   FzCannot create a z from a MultiIndex.Tr  r   r   r  r7  )r  rx   r   tupler   r   r?   rL   r   r_   r\   rZ   ry   r   r  r   _maybe_convert_datelike_arrayr  r[   r   rK   r  takerU  r   _values)r   r   ru  rq   rq   rr   !ensure_arraylike_for_datetimelikey	  s6   




	
r{  r   r   c                 C  r   ro   rq   r   rq   rq   rr   validate_periods	  r   r}  int | floatr  c                 C  r   ro   rq   r|  rq   rq   rr   r}  	  r   int | float | Noner'  c                 C  sL   | dur$t | rtjdtt d t| } | S t | s$td|  | S )a9  
    If a `periods` argument is passed to the Datetime/Timedelta Array/Index
    constructor, cast it to an integer.

    Parameters
    ----------
    periods : None, float, int

    Returns
    -------
    periods : None or int

    Raises
    ------
    TypeError
        if periods is None, float, or int
    NzNon-integer 'periods' in pd.date_range, pd.timedelta_range, pd.period_range, and pd.interval_range are deprecated and will raise in a future version.r(  zperiods must be a number, got )	r   is_floatr-  r.  r/  r>   r  r  r   r|  rq   rq   rr   r}  	  s   

r   r   r>  c                 C  s>   |dur| dur| |krt d| d| j | du r|} | S )a
  
    If the user passes a freq and another freq is inferred from passed data,
    require that they match.

    Parameters
    ----------
    freq : DateOffset or None
    inferred_freq : DateOffset or None

    Returns
    -------
    freq : DateOffset or None
    Nr!  r"  )r   r<  )r   r>  rq   rq   rr   r  	  s   r  ry   'DatetimeTZDtype | np.dtype | ArrowDtypec                 C  sJ   t | tr| jS t | tr| jdvrtd| d| jjS t| d S )z
    Return the unit str corresponding to the dtype's resolution.

    Parameters
    ----------
    dtype : DatetimeTZDtype or np.dtype
        If np.dtype, we assume it is a datetime64 dtype.

    Returns
    -------
    str
    r   r  z does not have a resolution.r   )	rx   rH   r  rF   r   r   pyarrow_dtyper   datetime_datar   rq   rq   rr   r(  	  s   


r(  )rm   rn   )rt   r,   ru   r,   )r   r   ru  rn   ru   rv  )r   r   ru   r   )r   r~  ru   r  )r   r  ru   r'  )r   r   r>  r   ru   r   )ry   r  ru   rn   )
__future__r   r   r   	functoolsr   rQ  typingr   r   r   r	   r
   r   r   r   r-  numpyr   pandas._libsr   r   pandas._libs.arraysr   pandas._libs.tslibsr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   pandas._libs.tslibs.fieldsr"   r#   pandas._libs.tslibs.np_datetimer$   pandas._libs.tslibs.timedeltasr%   pandas._libs.tslibs.timestampsr&   pandas._typingr'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   pandas.compat.numpyr7   r  pandas.errorsr8   r9   r:   pandas.util._decoratorsr;   r<   r=   pandas.util._exceptionsr>   pandas.core.dtypes.castr?   pandas.core.dtypes.commonr@   rA   rB   rC   rD   rE   pandas.core.dtypes.dtypesrF   rG   rH   rI   rJ   pandas.core.dtypes.genericrK   rL   pandas.core.dtypes.missingrM   rN   pandas.corerO   rP   rQ   rR   pandas.core.algorithmsrS   rT   rU   pandas.core.array_algosrV   pandas.core.arraylikerW   pandas.core.arrays._mixinsrX   rY   pandas.core.arrays.arrow.arrayrZ   pandas.core.arrays.baser[   pandas.core.arrays.integerr\   pandas.core.commoncorecommonr   pandas.core.constructionr]   r  r^   r_   pandas.core.indexersr`   ra   pandas.core.ops.commonrb   pandas.core.ops.invalidrc   rd   pandas.tseriesre   collections.abcrf   rg   r  ri   ru  rj   rk   rl   r   rs   r   r   r  rq  rr  rs  rt  rT  r{  r}  r  r(  rq   rq   rq   rr   <module>   s    (
LH 


            :?   
h'

"